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a b s t r a c t

Positive Matrix Factorization (PMF) is a factor analytic model used to identify particle sources and to
estimate their contributions to PM2.5 concentrations observed at receptor sites. Collinearity in source
contributions due to meteorological conditions introduces uncertainty in the PMF solution. We simu-
lated datasets of speciated PM2.5 concentrations associated with three ambient particle sources: “Motor
Vehicle” (MV), “Sodium Chloride” (NaCl), and “Sulfur” (S), and we varied the correlation structure
between their mass contributions to simulate collinearity. We analyzed the datasets in PMF using the
ME-2 multilinear engine. The Pearson correlation coefficients between the simulated and PMF-predicted
source contributions and profiles are denoted by “G correlation” and “F correlation”, respectively. In
sensitivity analyses, we examined how the means or variances of the source contributions affected the
stability of the PMF solution with collinearity. The % errors in predicting the average source contributions
were 23, 80 and 23% for MV, NaCl, and S, respectively. On average, the NaCl contribution was over-
estimated, while MV and S contributions were underestimated. The ability of PMF to predict the
contributions and profiles of the three sources deteriorated significantly as collinearity in their contri-
butions increased. When the mean of NaCl or variance of NaCl and MV source contributions was
increased, the deterioration in G correlation with increasing collinearity became less significant, and the
ability of PMF to predict the NaCl and MV loading profiles improved. When the three factor profiles were
simulated to share more elements, the decrease in G and F correlations became non-significant. Our
findings agree with previous simulation studies reporting that correlated sources are predicted with
higher error and bias. Consequently, the power to detect significant concentration-response estimates in
health effect analyses weakens.

� 2011 Elsevier Ltd. All rights reserved.
1. Background

Exposure to ambient fine particles of aerodynamic diameter less
than 2.5 mm (PM2.5) has been shown to be associated with signifi-
cant increases in cardiovascular and respiratory morbidity and
mortality risk (Dockery et al., 1993; Pope et al., 2002). Conse-
quently, research interest has grown in investigating the differen-
tial toxicities of specific PM2.5 components and sources, in order to
inform air quality management decisions.

Receptor models rely upon PM2.5 chemical speciation data to
identify particle sources and to estimate their contributions to
concentrations observed at a receptor site. The two main classes of
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receptor models, described in Hopke et al. (2006) and Miller et al.
(2002), are: i) Chemical Mass Balance (CMB), where the knowl-
edge of the number and chemical profile of sources is assumed; and
ii) Factor analysis methods, where both the number and chemical
profile of sources are unknown. The latter class of receptor models
includes Principal Component Analysis (PCA) and its variations,
UNMIX, and Positive Matrix Factorization (PMF). These models
estimate the number of “factors” that explain the largest amount of
variability or variance in the observed data. In addition, they
decompose a matrix of chemical composition data into a contribu-
tions matrix, a chemical profiles matrix, and residual error. It is
important to pursue systematic investigations about potential
sources of uncertainty and bias, especially if source apportionment
results are used for further analysis. For instance, epidemiological
studies use estimated source contributions to link health endpoints
to different source types (Laden et al., 2000; Ito et al., 2006). While
the consistency of source apportionment results across several
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users and methods and the robustness of applications to PM2.5
health effect assessments has been established (Thurston et al.,
2005; Hopke et al., 2006; Ito et al., 2006), issues regarding the
accuracy and uncertainty of their results still remain (Ito et al.,
2004, 2006; Grahame and Hidy, 2007).

The Positive Matrix Factorization (PMF) model is used exten-
sively in air pollution source apportionment studies (Lee et al.,
1999, 2006; Larsen and Baker, 2003; Kim and Hopke, 2007). PMF
is an individually weighted factor analytic model with
non-negativity constraints, initially developed by Paatero and
Tapper (Paatero and Tapper, 1993, 1994) and further refined by
Paatero and Hopke (Paatero and Hopke, 2003). PMF is made
available by the United States Environmental Protection Agency
under a public license (Norris et al., 2008) or by the author Dr. Pentii
Paatero under an individual license.

Uncertainty and bias in the PMF solution can potentially result
from rotational ambiguity, sampling and measurement error,
analytical uncertainties in the quantification of trace elements,
day-to-day variability in source profiles and collinearity in source
contributions (Paatero et al., 2005; Reff et al., 2007). Collinearity
may stem from the variability of meteorological conditions that
govern the dispersion and transformation of pollutants, as
evidenced by high correlations among the different PM2.5 constit-
uents (Grahame and Hidy, 2007; Gent et al., 2009; Hemann et al.,
2009).

Several studies have used simulated data to evaluate the
sensitivity of the PMF model fit to different sources of uncertainty
(Miller et al., 2002; Brinkman et al., 2006; Bzdusek and Christensen,
2006; Christensen and Schauer, 2008; Hemann et al., 2009). For
example, Christensen and Schauer (2008) used data on PM2.5
carbon fractions, ions, and metals from the St. Louis-Midwest
Supersite and simulated three cases of increasing perturbation in
the uncertainty matrix to evaluate the stability of the PMF model
solution. They found that the relative errors increased across three
scenarios representing increasing levels of uncertainty. Moreover,
they reported that errors associated with the estimation of daily
source contributions can be more than double those associated
with the estimation of average source contributions. The stability of
source profile estimates varied across sources, with secondary
sulfate and secondary nitrate sources having the most stable source
contribution estimates. Brinkman et al. (2006) simulated nine
speciated PM2.5 and organics personal exposure datasets to eval-
uate the accuracy of the PMF model under different filter chemical
analysis scenarios, incorporating source profile variability and
measurement uncertainty in the simulated concentrations. They
found similar errors in source apportionment for all scenarios,
where factors with uniform contributions or factors lacking unique
tracers with concentrations above detection limit were harder to
separate. However, they noted that when contributions from a pair
of sources were highly correlated in the simulated data, PMF
usually resolved a single factor corresponding to both sources.

Hemann et al. (2009) simulated one year of daily ambient
speciated PM2.5 data, comprised of 39 species of carbon fractions,
ions, and organics from nine pollutant sources. Toward this end,
they used neural networks and bootstrapping methods to estimate
the bias and variability due to random sampling error in predicted
source contributions at the daily time scale. They found that the
three factors, “Gasoline Vehicles”, “Meat Cooking”, and “Natural
Gas”, that had moderately strong correlations ranging from 0.64 to
0.81 in their simulated contributions time series, had the highest
bias and variability in their solutions. They also found that while
PMF was able to fit the contributions of some sources reasonably
well, bias in the solution can be high even when the variability or
uncertainty is low. Finally, Miller et al. (2002) used Monte Carlo
techniques to simulate personal exposure to 13 volatile organic
compounds and compared the performance of PMF to CMB,
UNMIX, and PCA/Abs Principal Componentmodels. They found that
PMF was best able to predict the major input factor profiles;
however, all four receptor models were unable to properly separate
sources whose contributions are strongly correlated or profiles are
similar.

While investigating different sources of error and bias in the
PMF solution, these simulation studies have reported that corre-
lated sources are generally harder to resolve, and factors such as
source variability, mass concentrations, or uniqueness of the source
profiles seem important. However, to the best of our knowledge, the
impact of source contributions collinearities on the PMF receptor
model fit has not been directly and systematically investigated yet,
and the relative importance of such factors is not well understood.
Therefore, the aim of our study is to simulate increasing collinearity
among source contributions and to examine the impact of such
correlation on the ability of PMF to estimate source profiles and
contributions. Furthermore, using sensitivity analyses, we examine
whether changes in the means or variances of the source contri-
butions, or similarity of the source profiles, affect the stability of the
PMF solution with the presence of collinearity.

2. Methods

2.1. Data simulation

Datasets of speciated PM2.5 concentrations (C) and their
respective uncertainties (U) are simulated using the R v2.9.1
statistical package (R Development Core Team, 2009). Each
simulated dataset consists of 340 daily concentrations of PM2.5
mass and 18 elements that are associated with three ambient
particle sources: “Motor Vehicle” (MV), “Sodium Chloride” (NaCl),
and “Sulfur” (S).

The concentration matrix (C(m�n)) is defined as

Cðm� nÞ ¼ Gðm� pÞ*Fðp� nÞ þ Eðm� nÞ (1)

where G(m�p) is the source contribution matrix (m is the number
of daily samples, equal to 340 and p is the number of sources, equal
to 3); F(p�n) is the source profile matrix (n is the number of
elements/species, equal to 18); and E(m�n) is the error matrix that
includes both analytical and measurement errors. Therefore, the
concentration of an element j on day i can be written as follows:

Cij ¼ Gik*Fjk þ eij (2)

where k indexes source.
In the primary analysis, theMotor Vehicle, Sodium Chloride, and

Sulfur mass contributions in the “G” matrix are each simulated
from a normal distribution, with means of 16, 6, and 20 mg m�3,
respectively, and a covariance matrix “Sigma”, where
Sigma ¼ Var * Corr. “Var” is the variance matrix with 21, 6, and 45
respectively on the diagonal, and “Corr” is the correlation matrix
between the 3 sources.

Source collinearity is simulated by changing the correlation
structure between the MV, NaCl, and S mass contributions in the
“Corr”matrix. Twenty-seven combinations of collinearity scenarios
are obtained by varying each pairwise correlation in “Corr” to take
the value of 0.0, 0.3, or 0.6, resulting in twenty-seven correlation
scenarios. For each scenario, 100 datasets are generated, resulting
in 2700 datasets.

A secondary set of sensitivity analyses is aimed at examining
how changes in the means or variances of the source contributions,
or similarity of the source profiles, in the presence of increasing
collinearity, affects the stability of the PMF model solution. To
accomplish this, the means and variances of the three source



Table 2
Factor loading profiles (ng mg�1) used in the simulations. The primary analysis factor
loading profiles, adapted from Gent et al. (2009), are used in all simulations except
the “Similar Profiles” sensitivity analysis.

Element Primary Analysis “Similar Profiles” Analysis

Motor
Vehicle

Sodium
Chloride

Sulfur Motor
Vehicle

Sodium
Chloride

Sulfur

EC 145.7 0.0 21.6 145.7 20.0 21.6
Zn 3.4 0.0 0.1 3.4 0.1 0.1
Pb 0.5 0.0 0.1 0.5 0.1 0.1
Cu 0.3 0.0 0.1 0.3 0.1 0.1
Se 0.1 0.0 0.0 0.1 0.0 0.0
Si 0.0 0.0 1.0 0.0 0.0 1.0
Fe 12.8 0.0 0.5 12.8 0.5 0.5
Al 0.0 0.0 1.3 0.0 0.0 1.3
Ca 2.7 0.0 0.0 2.7 0.0 0.0
Ba 0.4 0.0 0.1 0.4 0.1 0.1
Ti 0.2 0.0 0.1 0.2 0.1 0.1
S 16.7 25.0 164.9 16.7 25.0 164.9
P 2.1 0.0 6.7 2.1 2.1 6.7
K 0.0 0.0 2.3 0.0 0.0 2.3
V 0.1 0.0 0.1 0.1 0.1 0.1
Ni 0.3 0.0 0.0 0.3 0.0 0.0
Na 0.0 200.0 0.0 0.0 200.0 0.0
Cl 0.0 300.0 0.0 0.0 300.0 0.0
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contributions are individually varied. In order to capture the rela-
tive variance of a factor with respect to its mean, the coefficient of
variation (CV) is defined as the standard deviation of the source
contribution divided by its mean.

In each of the seven sensitivity analyses, only one parameter is
varied in comparison to the primary analysis: 1) the mean of NaCl is
increased keeping the original CV; 2) the variance of NaCl is
increased; 3) the variance of NaCl is decreased; 4) the variance of
MV is increased; 5) the CV’s of all three factors are increased to the
same level keeping the original means; 6) the means of all three
factors are adjusted to 16 mg m�3 keeping the original CV’s; and 7)
the three factor profiles are mademore similar. Each scenario in the
sensitivity analyses is simulated 10 times (270 datasets each).
Table 1 presents the means, variances, and coefficients of variation
that were specified in the primary analysis and the secondary
sensitivity analyses, along with the number of simulations. The
PM2.5 mass on day i is equal to

X3
k¼1

Gik (3)

The “F” matrix of factor loading profiles encompassing 18
elements is adapted from the Gent et al. (2009) source apportion-
ment study on speciated ambient PM2.5 data collected between
August 2000 and February 2004 in New Haven, Connecticut. In
order to create similar profiles for the seventh sensitivity analysis,
the loading of any element that was present in two of the three
factors was set to the minimum of the two loadings in the third
factor. This resulted in factor profiles that share 10 of the 18
elements in common, with 8 elements remaining unique to a single
factor. The loading profiles used in the different simulations are
presented in Table 2.

Thematrixof analytical andmeasurementerrors E is calculated as

Eij ¼ Zij*Uij (4)

where “Z” is a matrix of Z scores sampled from a Normal distri-
bution for each element on each day (Zj w N(0,1)). “U” is the matrix
of analytical uncertainties in the daily elemental concentrations.
The uncertainty of element j on day i consists of 2 components:
a fraction (f) of the concentration of element j on day i, and the
Method Detection Limit (MDL) of element j. Therefore, the uncer-
tainty of element j on day i is given by the following equation:

Uij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
f *Gik*Fkj

�2þMDL2
r

(5)

where f ¼ 0.2 for PM2.5 mass and f ¼ 0.1 for elements.
Table 3 lists the MDL values used to simulate the daily uncer-

tainties. For Elemental Carbon (EC) the MDL of 80 ng m�3 is used,
which is based on the NIOSH 5040 thermal optical transmittance
Table 1
Simulation parameters used in the primary analysis and the seven sensitivity analysis sc

Scenario N Simulations Simulation Parameters

Motor Vehicle

Mean Variance

Primary Analysis 100 16 21
Sensitivity Analyses
1) Increase NaCl Mean 10 16 21
2) Increase NaCl Variance 10 16 21
3) Decrease NaCl Variance 10 16 21
4) Increase MV Variance 10 16 40
5) Same Coefficients of Variation 10 16 41
6) Same Means 10 16 21
7) Similar Profiles 10 16 21
method (Dutton et al., 2009). For PM2.5 mass, the typical MDL of
FRM gravimetric analysis (0.3 mg m�3) is used, and for the
remaining 17 elements, the X-ray Fluorescence MDL is used. In
order to decrease the weight of PM2.5 mass in the PMF solution, its
MDL is multiplied by 10 to a final value of 3 mg m�3. Finally, in all
data simulations, contributions and concentrations that were
negative were set to zero.
2.2. Positive matrix factorization

In each scenario, the sets of concentration and sample-specific
uncertainty matrices are analyzed in PMF using the ME-2 multi-
linear engine executable (me2wopt.exe) and script file
(PMF2_bs2.ini), under the EPA public license available with the EPA
PMF v3.0 installation (Paatero, 1999, 2010; Norris et al., 2009). PMF
uses an iterative least squares algorithm to solve equation (2) by
minimizing the sum of squares object function Q for a given
number of factors p. Q is defined as the following:

Q ¼
Xm
i¼1

Xn
j¼1

 
eij
Uij

!2

(6)

where eij is the residual error in the PMF model for species j on
day i, and Uij is the uncertainty of species j on day i, as defined in
enarios.

Sodium Chloride Sulfur

CV Mean Variance CV Mean Variance CV

0.29 6 6 0.41 20 45 0.34

0.29 10 16 0.40 20 45 0.34
0.29 6 16 0.67 20 45 0.34
0.29 6 3 0.29 20 45 0.34
0.40 6 6 0.41 20 45 0.34
0.40 6 6 0.41 20 64 0.40
0.29 16 43 0.41 16 29 0.34
0.29 6 6 0.41 20 45 0.34



Table 3
Distribution of elemental concentrations and percent below detection limit in the
primary analysis.

Element Distribution Detection Limit

Mean (ng m�3) Std Dev (ng m�3) MDL (ng m�3) % < MDL

EC 2763 784 80 0
Zn 56 17 2 0
Pb 10 7 7 35
Cu 7 3 2 4
Se 2 1 1 30
Si 20 12 11 25
Fe 215 66 15 0
Al 27 17 15 27
Ca 43 13 2 0
Ba 18 22 33 77
Ti 5 2 2 9
S 3715 1215 3 0
P 168 52 4 0
K 46 17 5 1
V 4 1 1 3
Ni 5 3 3 30
Na 1201 510 87 1
Cl 1801 755 2 1

R. Habre et al. / Atmospheric Environment 45 (2011) 6938e6946 6941
equation (5). Samples with high uncertainties will be down-
weighted in the solution. Predicted profiles and contributions are
constrained to being positive. The objective is to find the optimal
values of Gik and Fkj for a given number of sources p that fit Cij with
minimum Q value. The Q value is a goodness-of-fit parameter that
assesses how the model fits the data. Qtrue is calculated using all
data points while Qrobust is calculated accounting for outlier points
(points with scaled residuals above 4). The theoretical Q for a model
run is equal to nm� p(nþm), where n is the number of species,m is
the number of samples, and p is the number of factors. In our
simulations, n ¼ 19 species (18 elements and PM2.5 mass), m ¼ 340
days, and p ¼ 3 factors in each scenario, so Qtheoretical ¼ 5383.
Solutions with Q values within the range of Qtheoretical are generally
considered acceptable (Norris et al., 2008).

The PMF model is run in robust mode for all scenarios, with 10
base runs, 3 factors (np ¼ 3), random seeds (contrun ¼ 0), and 10%
modeling uncertainty, in addition to the sample-specific uncer-
tainties (error model code em ¼ �12, C1 ¼ 0.0, C2 ¼ 0.0, C3 ¼ 0.1).
PM2.5 mass is included in the factor analysis with high uncertainty,
along with the 18 elements, such that the mass apportioned to each
factor can be used to scale the normalized contributions to mass
units, as suggested in Norris et al. (2009). There are nomissing data,
and no inclusion or deletion criteria are specified to ensure similar
model runs across scenarios. The convergent PMF base runwith the
minimum Qrobust value and the least number of steps is selected as
the model solution, and no FPEAK rotation or bootstrapping is
performed on the base solution. Output files are generated by PMF
and analyzed using the SAS 9.2 statistical package (SAS Institute
Inc., 2011).
2.3. Data analysis

For the primary analysis, the means and standard deviations of
the elemental concentrations, as well as the percent belowMDL are
calculated and presented in Table 3. In order to assign a predicted
factor to a simulated factor in each PMF run, the Pearson correlation
coefficient is calculated between the simulated (input) and pre-
dicted (output) source contributions (G correlation), as well as the
simulated and predicted source profiles (F correlation). A predicted
factor must have a Pearson correlation greater than or equal to 0.8
with the simulated contributions to be considered the estimate for
that contribution. This test is performed on the contributions first,
and if the G correlation is less than 0.8, then the correlation
between the true and estimated profiles (F correlation) is exam-
ined. In addition to the G and F correlations, the percent absolute
errors in estimating the daily and average mass contributions are
calculated for each source as follows:

%ErrorDaily ¼
P340

i¼1
jgik � ĝikj

gik
340

*100 (7)

where gik and ĝik are the simulated and predicted contributions of
source k on day i, respectively, and

%ErrorAverage ¼ jgk � �̂gkj
gk

*100 (8)

where gk and �̂gk are the simulated and predicted average mass
contributions of source k, respectively.

The degree of collinearity that is impacting each factor in each
scenario is defined as the sum of the correlation imposed between
that factor and the other two factors, and it ranges from 0 to 1.2.
Therefore, for “Motor Vehicle”, “Sodium Chloride”, and “Sulfur”, the
measure of collinearity is defined as CollinearityMV ¼ CorrMV,NaCl þ
CorrMV,S, CollinearityNaCl¼ CorrNaCl,MVþ CorrNaCl,S, andCollinearityS¼
CorrS,MV þ CorrS,NaCl, respectively.

In order to test the degree and significance of the change in the
PMF prediction error against increasing collinearity, the % Daily
Error, % Average Error, G correlation, and F correlation are sepa-
rately regressed on collinearity for each factor in each of the
simulation scenarios. For example, to test the magnitude and
significance of the change in the G correlation for MV as collinearity
is increased in the primary analysis, the slope and the p-value of the
slope of the following linear regression are used: G CorrelationMV ¼
Intercept þ Slope * CollinearityMV þ Error. The change in G corre-
lation is deemed significant if the p-value of the slope is less than or
equal to 0.05.

3. Results

3.1. Primary analysis

Table 3 summarizes the distribution of the simulated elemental
concentrations across the 100 simulations of 27 collinearity
scenarios in the primary analysis. The elements Pb, Se, Si, Al, Ba, Ti
and Ni have the highest percent below MDL, ranging between 9
and 77%.

All simulation scenarios converge in PMF, with Qrobust goodness-
of-fit parameter values ranging from a minimum of a 2365 to
a maximum of 2686 (mean 2512) in the primary analysis of 2700
datasets. Withmean input contributions of 16, 6 and 20 mgm�3, the
mean predicted factor contributions of “Motor Vehicle”, “Sodium
Chloride”, and “Sulfur” are 12.7, 10.8 and 15.8 mg m�3, respectively.
The distribution of the mean predicted contributions of the three
sources in the primary analysis across all collinearity scenarios is
shown in Fig. 1.

The % error for the estimation of daily contributions of “Motor
Vehicle”, “Sodium Chloride”, and “Sulfur” is 27, 83, and 27%,
respectively. The increase in % daily error with collinearity is
significant for MV and Sulfur. For MV, it increases from 21 to 31%,
while for S, it increases from 25 to 29% as collinearity increases
from 0 to 1.2. The % error for the estimation of average mass
contributions is 23, 80, and 23% for MV, NaCl, and S, respectively.
On average, the “Sodium Chloride” contribution is overestimated,
while “Motor Vehicle” and “Sulfur” contributions are under-
estimated. As collinearity increases from 0 to 1.2, the % error for the
estimation of average mass contributions significantly increases



Fig. 1. Mean predicted mass contributions (mg m�3) for the three sources across all
collinearity scenarios in the primary analysis (n ¼ 2700 datasets). The horizontal
reference lines indicate the simulated (input) mean mass contributions.

R. Habre et al. / Atmospheric Environment 45 (2011) 6938e69466942
from 17 to 27% for MV, from 77 to 93% for NaCl, and from 21 to 25%
for S.

The average Pearson correlation coefficient between the simu-
lated and predicted daily factor contributions (G correlation)
decreases significantly as collinearity increases in all three simu-
lated factors in the primary analysis (Fig. 2A). The sharpest decrease
is seen in “Motor Vehicle”, followed by “Sulfur” and then by
“Sodium Chloride”, following the same ordering of the assumed
CV’s for the three sources. Finally, the F correlation, or the corre-
lation between the simulated and predicted factor profiles, also
decreases significantly as collinearity increases (Fig. 3A).

3.2. Sensitivity analyses

Table 4 shows the % absolute errors for estimating daily and
average source contributions in the different simulation scenarios.
As previously stated, the % daily and average errors increase with
collinearity. In the two scenarios where the mean input mass
contribution of NaCl is increased from 6 to 10 mg m�3 and from 6 to
16 mg m�3, the % absolute error for average source contribution
decreases from 80 to 33 and 18%, respectively. Increasing the
variance of MV decreases its daily and average estimation errors.
Setting the mean mass contribution of the three sources to
16 mg m�3 results in the lowest overall daily and average errors.
When the CV’s of the three sources are set to the same level, the
NaCl source exhibits the largest prediction errors, followed by S
then MV.

Fig. 2 shows the G correlations, or correlations between the
simulated and predicted source contributions, against collinearity
in each simulation. In the primary analysis, the ability of PMF to
predict the source contributions decreases significantly as collin-
earity increases for all factors. “Sodium Chloride” with the highest
CV in its source contribution performs the best, while “Motor
Vehicle” with the lowest CV performs the worst. Moreover, the CV
of the source contributions influences the PMF solution in the
presence of collinearity. When the variance of NaCl increases from
6 to 16, and that of MV increases from 21 to 40, the deterioration in
the G correlations with increasing collinearity becomes non-
significant. In contrast, decreasing the variance of NaCl from 6 to
3 results in a greater and more significant deterioration in the PMF
solution, in terms of being able to predict the source contributions.
By increasing the CV of all three source contributions to the same
level of 0.4, the decrease in G correlations becomes smaller but still
significant.

Keeping the CV constant, as the mean contribution of NaCl
increases from6 to 10 mgm�3, the decrease in G correlations against
increasing collinearity becomes non-significant. Setting the mean
contributions of all three sources to 16 mg m�3, the decrease in G
correlations as collinearity increases is non-significant for NaCl, and
it is significant for MV and S. In this simulation, NaCl is the only
source whose mass is increased compared to the primary analysis.
Finally, varying the input factor profiles to becomemore similar and
share more elements results in non-significant decreases in the G
correlations with increasing collinearity for all three sources.

Fig. 3 shows the average Pearson correlation coefficients
between the simulated and predicted profiles (F correlations) by
collinearity for each source and simulation. In the primary analysis,
the ability of PMF to predict the source profiles deteriorates
significantly as collinearity in the contributions of the three sources
increases. The “Sulfur” factor with the highest mean contribution
seems to perform best. PMF is more robust to high collinearity
when the mean contribution of NaCl is increased, evidenced by the
smaller but still significant decrease in F correlations of NaCl
compared to the primary analysis.

By separately increasing the variance of the NaCl or MV source
contributions, the decrease in F correlations becomes smaller and
less significant for all three factors, suggesting an improved
performance of PMF in the presence of increasing collinearity.
Conversely, decreasing the NaCl variance results in a sharper and
significant decrease in F correlations. When the CV of all factors
increases to 0.4, keeping the mean contributions constant, the
performance of PMF in the face of increasing collinearity improves
for all three sources, even though the decrease in F correlations
remains significant. “Sulfur” with the highest mean contribution
performs best.

Assigning the samemean contribution of 16 mgm�3 to all factors
while keeping their original CV’s also results in significant
decreases in the F correlation with collinearity. However, the
decrease in F correlations becomes smaller for NaCl and larger for S.
This is reflecting the change in the contributions compared to the
primary analysis, since the NaCl mean contribution increases from
6 to 16 mgm�3 and that of S decreases from 20 to 16 mgm�3. Finally,
in the similar profiles scenario, the F correlation does not show any
significant change with increasing collinearity.

4. Discussion

We simulated fine particle and elemental mass concentrations
and their uncertainties based on characteristics of real data tomake
this simulation exercise as realistic as possible. We created 27 basic
scenarios that correspond to different degrees of collinearity
amongst the contributions of three sources, and simulated these
scenarios 100 times. Subsequently, we varied the mean source
contributions, variances of the source contributions, and profiles of
these sources in seven different sensitivity analysis scenarios, and
examined the impact of each scenario on the PMF solution stability
while increasing source collinearity. The rationale for our selection
of the seven sensitivity analyses was to first confirm our suspicion
that the CV of a factor is highly influential in determining how well
it is predicted by PMF in the presence of collinearity, and secondly,
to further investigate reports from the literature suggesting that
factors with higher mass contributions or with unique profiles are
predicted with lower error.

We first targeted “Sodium Chloride”, the factor that PMF
resolved with the least error in the primary analysis in the pres-
ence of increasing collinearity. We changed the mean and variance
of its contribution in order to determine the influence of these two
parameters on the robustness of the PMF solution. We also
changed the variance of NaCl to 3, 8, 10 and 16, but only presented
the lowest and highest variance scenarios since the remaining
results followed the expected direction. We then changed the



Fig. 2. G correlation or Pearson correlation coefficient between simulated and predicted daily mass contributions against collinearity for each source in the primary analysis (A) and
the seven sensitivity analyses: increase NaCl mean (B), increase NaCl variance (C), decrease NaCl variance (D), increase MV variance (E), same CVs (F), same means (G), and similar
profiles (H). Simulations where the decrease in correlation is significant at the 0.05 level between the observed and predicted G as a function of source collinearity are shaded.
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variance of “Motor Vehicle” to confirm the findings of NaCl using
a different factor. Following that, we set the CV’s to the same level
to look at the independent effect of the mean contributions, and
then set the mean contributions to the same level to look at the
effect of the CV’s independently. We finally made the profiles less
distinguishable.

All datasets were analyzed in a similar manner in order to
isolate the effect of the varying correlation structures between the
source contributions. In order to simulate normally-distributed and
positive source contributions, we had to create concentrations that
are normally-distributed and non-negative. As a result the gener-
ated mass and elemental concentrations were higher than those
typically observed. However, the PMF performance was stable
across the different simulations. For example, in the primary
analysis of 2700 datasets, the Qrobust goodness-of-fit parameter
values were stable and ranged between 2365 and 2686. The PMF
solutions were similarly stable in the seven sensitivity analyses.
This confirmed our assumption that the selected close-to-default
PMF settings for our simulations were suitable. Moreover,
Lingwall and Christensen (2007) tested several PMF settings in
their simulation study that looked at the use of F element pulling or
profile targeting in PMF. They found that the default settings are
generally appropriate, and very few of them had a dramatic effect
on the model performance.

In our simulations, source collinearity was not as influential
as the mass contribution in determining the level of error in



Fig. 3. F correlation or Pearson correlation coefficient between simulated and predicted source profiles against collinearity for each source in the primary analysis (A) and the seven
sensitivity analyses: increase NaCl mean (B), increase NaCl variance (C), decrease NaCl variance (D), increase MV variance (E), same CVs (F), same means (G), and similar profiles (H).
Simulations where the decrease in correlation is significant at the 0.05 level between the observed and predicted F as a function of source collinearity are shaded. The p-value is
indicated for scenarios where the decrease in F correlation is marginally significant.
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estimating daily and average source contributions. For example,
the % average error for NaCl increased from 77 to 93% as
collinearity increased from 0 to 1.2 in the primary analysis.
Whereas, when the NaCl mass contribution was increased from
6 to 10 mg m�3, its % average error decreased from a mean of 80
to 33%.

In all the scenarios where the mean simulated mass contribu-
tions of MV, NaCl, and Swere 16, 6 and 20 mgm�3, respectively, PMF
consistently underpredicted the MV and S average contributions
and overpredicted the NaCl contribution. This could be due to the
fact that PMF tends to apportion the daily PM2.5 mass somewhat
equally among the three sources, resulting in predicted
contributions that are closer to the overall mean (14 mg m�3) of the
input source contributions. This is further evidenced in the “Same
Means” scenario, where themeanmass contributionswere all set to
16 mg m�3. Despite the fact that the mean mass of NaCl increased
from6 to 16 mgm�3 but that of S decreased from20 to 16 mgm�3, the
% average errors decreased from 23, 80 and 23% in the primary
analysis, to 19, 18 and 14% for MV, NaCl, and S, respectively. This
improvement in the PMF solution is likely due to decreasing, or in
this case, eliminating the difference in the input contributions of the
simulated sources.

Furthermore, we found that the G correlations decreased
significantly as collinearity in the source contributions increased,



Table 4
Mean absolute errors (%) for estimating daily and average source contributions in
the primary analysis and sensitivity analyses.

Scenarios Absolute Errors (%)

Motor Vehicle Sodium Chloride Sulfur

Daily Average Daily Average Daily Average

Primary Analysis 27 23 83 80 27 23
Sensitivity Analyses
1) Increase NaCl Mean 29 20 38 33 23 19
2) Increase NaCl Variance 27 22 88 78 26 21
3) Decrease NaCl Variance 31 27 59 57 28 24
4) Increase MV Variance 22 16 92 89 26 22
5) Same Coefficients
of Variation

20 15 83 75 23 20

6) Same Means 24 19 23 18 19 14
7) Similar Profiles 26 22 79 77 27 24
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implying that the PMF solution deteriorated. As collinearity
increased, the factor with the lowest CV, MV in the primary anal-
ysis, performed the worst, while the factor with the highest CV,
NaCl, performed the best. The importance of the CV was confirmed
by increasing the CV of NaCl and MV separately, in two sensitivity
analyses, and finding that the decrease in G correlations with
increasing collinearity became smaller and non-significant. On the
contrary, when the CV of NaCl was decreased, the deterioration of
the G correlations became more pronounced and significant.
Similarly, increasing the CV of all three factors improved PMF
performance against increasing collinearity.

We also found that increasing a factor’s mean contribution
resulted in an improved performance against collinearity.When the
mean of NaCl was increased, the G correlations still decreased with
increasing collinearity; however, this decrease was non-significant.
Setting the same CV’s, the G correlations decreased significantly
with increasing collinearity in all three sources, despite their
differing mean mass contributions. Finally, in the “Similar Profiles”
scenario, when the three factor profiles were simulated to share
more elements, the effect of collinearity on G correlations became
smaller and non-significant, and NaCl, with the highest CV among
the three factors, was predicted with the least error.

As for the factor profiles, the ability of PMF to predict them in the
face of increasing collinearity is reflected in the F correlations,which
are the Pearson correlation coefficients between the simulated and
the predicted factor loading profiles. We found that the F correla-
tions decreased significantly in all three sources with increasing
collinearity. However, the source with the highest mean contribu-
tion, “Sulfur”, performed the best despite not having the highest CV.
Similarly, increasing the mean contribution of a factor improved
PMF’s ability to predict its loading profile as collinearity increased.
Also, increasing a factor’s CV rendered the effect of collinearity on F
correlations smaller and less significant. In the scenariowhere factor
profiles were simulated to be more similar, the decrease in F
correlations was non-significant. PMF predicted the factor profiles
with a similar degree of error across all collinearity levels.

Our findings agree with those reported by other simulation
studieswhich found that correlated sourceswere harder to separate
and their predictions encompassed higher error and bias. Miller
et al. (2002) found that even though PMF performed best in
extracting the major source profiles of their simulated volatile
organic compounds (VOC’s) personal exposure sources, it had
difficulty extracting sources that had similar chemical profiles. In
addition, all four receptor models evaluated, including PMF, CMB,
PCA/APCS and UNMIX, were sensitive to collinearities in the simu-
lated data induced by common meteorological effects on VOC’s
source contributions. Also, all models had difficulty identifying
sources that contributed less than 5% to the total VOC
concentrations. Christensen and Schauer (2008) found that source
contribution errors were relatively lower for sources encompassing
the secondary species sulfate and nitrate that are usually present at
high concentrations andmeasuredwith the least error. Contribution
estimates of the sulfate and nitrate related sourcesweremore stable
against perturbations in the uncertainties matrix specified in PMF.

In the Brinkman et al. (2006) simulations, the “vegetative
debris” factor that contributed about 5% to PM2.5 mass and was the
least variable was not properly identified. Also factors that had
highly correlated simulated mass contributions were not well
identified. Furthermore, Hemann et al. (2009) found that in
a simulated dataset the three factors that had moderately strong
correlations with each other had poor solutions with respect to
bias, variability, and temporal pattern prediction.

Our simulations could have benefitted from a greater range of
correlations and sensitivity analyses, but wewere limited by timing
and computing constraints. We could have also attempted rotating
the PMF predicted factor profiles to match the input profiles;
however, we chose to treat the scenarios identically to differentiate
the impact of collinearity, and use settings that are as close to
default as possible in PMF. We could also compare the performance
of PMF to other source apportionment models like UNMIX or PCA.
Furthermore, ourmeasure of collinearity is an approximation of the
correlation affecting each source and it may not be ideal to differ-
entiate the impact of correlation between each pair of factors.

The main focus of our analysis was to systematically investigate
the impact of source collinearity on the PMF receptor model solu-
tion. The use of simulated data makes it possible to compare model
inputs to outputs for different collinearity scenarios, while
controlling for other sources of variability that may exist in real
scenarios, such as differences in the number of contributing sour-
ces, changes in their day-to-day profiles, and other factors.
However, our findings depend on the characteristics of the simu-
lated data used for the PMF analysis and may not reflect its
performancewhen used to analyze real particle concentration data.

Sources with higher coefficients of variation, as represented by
tracer species that have higher coefficients of variation, were better
predicted than sources with lower CV’s when collinearity existed.
Therefore, this exercise can be helpful in identifying situations
where source collinearity might exist, and may warrant combining
receptor modeling predictions with further confirmatory analyses
and physical parameters or supporting information, like wind
trajectory analyses, or includingmore tracer species or pollutants in
the analyses. In such situations, one should be cautious when
interpreting model predictions and using estimated source
contributions in health effect analyses. As the correlation between
the actual and predicted source contributions of certain sources
degrades, the power to detect significant concentration-response
estimates weakens, biasing toward the null. This might also lead
to biased health effect risk estimates or to attributing the impact of
one source group to another. As reported by Ito et al. (2004), local
sources might contain higher degrees of error than regional sources
and secondary aerosols in source apportionment studies. In such
instances, the use of source apportioned particulate matter
contributions inmorbidity andmortality health effect analysesmay
result in distorted or undetected estimates of absolute health risk
per unit mass concentration.
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